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Design and Analysis of Distributed Routing AlgorithmsShree N. MurthyAbstractRoute assignment is one of the operational problems of a communication network, andadaptive routing schemes are required to achieve real-time performance. This thesis intro-duces, veri�es and analyzes two new distributed, shortest-path routing algorithms, whichare called, Path-Finding Algorithm (PFA) and Loop-Free Path-Finding Algorithm (LPA).Both algorithms require each routing node to know only the distance and the second-to-last-hop (or predecessor) node to each destination. In addition to the above information, LPAuses an e�cient inter-neighbor coordination mechanism spanning over a single hop. PFAreduces the formation of temporary loops signi�cantly, while LPA achieves loop-freedom atevery instant by eliminating temporary loops. The average performance of these two algo-rithms is compared with the Di�using Update Algorithm (DUAL) and an ideal link state(ILS) using Dijkstra's shortest-path algorithm by simulation; this performance comparisonis made in terms of time taken for convergence, number of packets exchanged and the totalnumber of operations required for convergence by each of the algorithms. The simulationswere performed using a C-based simulation tool called Drama, along with a network simu-lation library. The results indicate that the performance of PFA is comparable to that ofDUAL and ILS and that a signi�cant improvement in performance can be achieved withLPA over DUAL and ILS.
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1Chapter 1IntroductionA very important component of a network is the communication subnetwork. This includesthe hardware and the software required for the transmission of data from one node toanother. There are mainly two switching schemes { circuit-switching and packet-switching,which can be used for data transfer. The bursty nature of computer tra�c favors packet-switched mode of transmission.In a packet-switched network, messages are partitioned into packets, which are thentransmitted through the network using store-and-forward switching. The selection of nexthop towards a destination in a packet-switched network is made by a well de�ned decisionrule referred to as the routing policy. Routing algorithms are referred to as the network layerprotocol that guides packets through the communication subnet to their correct destination.Routing policies can be classi�ed as deterministic and adaptive depending on whetherthe routes change in response to the tra�c input pattern. In a deterministic policy, thepath a packet takes from a source i to a destination j is predetermined. In an adaptivepolicy, packets are routed such that the congested and damaged areas in the network areavoided. In other words, adaptive routing policies are adaptable to load uctuations andchanges in the topology of the network. The information maintained at each routing nodeor router is updated depending on the state of the network.Adaptive routing algorithms can also be classi�ed as centralized or distributed, dependingon the way in which routing paths are computed. In a centralized approach, the path
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2information is computed at one centralized node, whereas in a distributed approach, pathinformation is computed at each routing node.Distributed routing algorithms can be further classi�ed into distance-vector algorithms(DVA) and link-state algorithms (LSA), depending on the method adopted to maintainrouting information in router databases. In a DVA, a router knows the cost of the preferredpath through each of its neighbors to all destinations and uses this information to computethe shortest path and the next node (successor) in the path to each destination. Eachupdate message sent by a router to its neighbors contains a vector with one or more entries,each of which speci�es as a minimum, the distance to a given destination. In a LSA, anode must receive information about the entire network topology to compute the preferredpath to each destination. Each node broadcasts update messages containing the state ofa node's adjacent links to every other node in the network. In this thesis, we concentrateon distance-vector algorithms for updating routing information maintained at each router(node).Routing in today's computer networks is accomplished by distributed shortest-pathrouting algorithms. The routing algorithms based on Distributed Bellman-Ford (DBF)algorithm [BG92] are susceptible to the formation of temporary loops. Looping problemscan be avoided in one of the three ways. OSPF [Moy91] relies on broadcasting completetopology information among routers, and organizes an internet hierarchically to cope withthe overhead incurred with any topology broadcast algorithm. BGP [RL94] exchangesdistance vectors that specify complete paths to destinations. Cisco's EIGRP uses a loop-free routing algorithm based on internodal coordination called DUAL [GLA93]Recently, a number of distributed shortest-path routing algorithms have been pro-posed [CRKGLA89, GLA86, Hag83, Hum91, RF91] have proposed distributed shortest-path algorithms that utilize information regarding the length and the second-to-last hop(predecessor) of the shortest-path to each destination to eliminate the counting-to-in�nityproblem. We refer to these algorithms as path-�nding algorithms. Path-�nding algorithmsare attractive alternative to DBF for distributed routing as they eliminate the counting-to-
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3in�nity problem. However these path �nding algorithms can incur substantial temporaryloops in the paths speci�ed by the predecessor information before they converge, whichleads to slower convergence.In this thesis, we introduce, verify and analyze two new shortest-path routing algo-rithms, which we call path-�nding algorithm (PFA) and loop-free path-�nding algorithm(LPA). Both of these algorithms operate by specifying the second-to-last-hop (or predeces-sor) to each destination, in addition to the distance to destination. Predecessor informationis used to derive an implicit path to the destination without additional overhead. Anyrouter can traverse the path speci�ed by a predecessor from any destination back to itsneighbor router to determine whether by using that neighbor as its successor would createa path that contains a loop (i.e, involves the router itself). Unlike earlier path-�nding al-gorithms [CRKGLA89, Hum91], in PFA and LPA, upon receiving an update message fromits neighbor k, node i also determines if a path to destination j through any of its otherneighbors (6= k) includes node k itself. If so, such a path is not selected. This step reducesthe possibility of temporary loops. LPA achieves loop-freedom at every instant using theimplicit path information and an inter-neighbor coordination mechanism that spans oversingle hop only.PFA and LPA use the same amount of information as previous path-�nding algorithmsand have lower time and communication complexities. The algorithms can be made adaptiveto the network load by choosing a proper cost-metric for updating routing information ateach node. The results presented here can be used to develop a new implementation of theRouting Information Protocol (RIP) [Hed88] that eliminates all of its performance problems.The rest of this thesis is organized as follows. Chapter 2 gives a brief overview about thedevelopment of routing algorithms and the state of the art of routing protocols. Chapter 3describes and veri�es the �rst of the two proposed algorithms, PFA. Chapter 4 describes andveri�es LPA. Chapter 5 compares the performance of PFA and LPA with the performanceof DUAL and ILS for a single node/link failure and addition; this comparison is made by



www.manaraa.com

4simulations using a C-based simulation language Drama along with a network simulationlibrary. Finally, Chapter 6 concludes with a brief summary and an insight into future work.
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5Chapter 2OverviewRouting techniques for packet-switched networks can be broadly classi�ed into static andadaptive routing policies [Sch86]. In static routing, routing tables are set up at a certaintime before the data are being transmitted and the routing table is not changed thereafter.In adaptive routing, network conditions are continuously monitored and the routing tablesare changed dynamically to adapt to the changing network conditions. Adaptive routingcan be further subdivided into centralized and distributed routing, depending on the storageof the routing information. Henceforth, we refer to adaptive, distributed routing simply asrouting.At a fundamental level, for routing packets, a switch has to decide on which outboundqueue to place a packet based on the destination address of the packet and quality of service(QoS) parameters. Routing protocols are responsible for forwarding the data packets overroutes that provide good or optimal performance. Consequently, a routing protocol isrequired to maintain the status of all the routes in the network.A routing node (or router) running a routing algorithm mainly consists of two parts{ an initialization step and a step that is repeated until the algorithm terminates. Theinitialization step involves initializing all the routers in the network. The subsequent stepinvolves updating minimum distance of each router for all destinations until the algorithmconverges to correct distances. The routing algorithms di�er in the way by which theupdating step is implemented. There are two kinds of adaptive routing algorithms | link
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6state and distance vector algorithms. In this thesis, we focus on shortest-path routingalgorithms based on distance vectors.Link-state Algorithms: In the link-state approach, each router1 maintains a completeview of the network topology with a cost for each link. A router broadcasts regularly thelink cost information of all its outgoing links to all other routers. Typically, this is done byooding. That is, a router sends link cost information to all its neighboring routers, whoin turn forward the same information to their neighbors and so on. When a router receivesinformation about the change in a link cost, it updates its view of the network topologyand applies a shortest path algorithm to choose its next hop for each destination.Routers may not always have a consistent view of the network topology, because of thetime updates take to reach all routers. This inconsistent view of the network can lead to theformation of loops, which are temporary and disappear in the time it takes for all routersto have the same topological information.Shortest Path First (SPF) [McQ74] is a link-state protocol in which each node computesand broadcasts the costs of its outgoing links periodically and applies Dijkstra's shortestpath algorithm [BG92] to determine the next hop; other routing protocols that work on thesame link-state approach are IS-IS [Ora90, Per91], and OSPF [Moy91].Distance-Vector Algorithms: In a distance-vector algorithm, a router knows the lengthof the shortest-path (distance) from each of its neighbors to every destination in the net-work, and uses this information to compute its own distance and next router (successor)to each destination. Well-known examples of routing protocols based on distance-vectoralgorithms, which we call distance vector algorithms (DVA), are the routing informationprotocol (RIP) [Hed88], the HELLO protocol [Mil83a], the gateway-to-gateway protocol(GGP) [HS82], the exterior gateway protocol (EGP) [Mil83b] and the old ARPANET rout-ing protocol [McQ74]. All these DVAs have used variants of the distributed Bellman-Fordalgorithm (DBF) for shortest-path computation [BG92]. The primary disadvantage of DBF1we use `router' and `node' interchangeably
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7are routing-table loops and counting-to-in�nity [GLA89]. A routing-table loop is a path spec-i�ed in the routers' routing tables at a particular point in time, such that the path visitsthe same router more than once before reaching the intended destination. A router is saidto be counting-to-in�nity when it increments its distance to a destination until it reaches aprede�ned maximum distance value.Because of the poor performance of DVAs implemented using DBF, DVAs were notconsidered to be a viable approach to supporting routing in large networks or internets.Recently, however, a number of e�cient distance-vector algorithms have been proposed toeliminate the counting-to-in�nity problem and routing-table loops [JM82, GLA92, GLA89].In this thesis, we focus on the distance-vector algorithms which achieve loop freedom bymaking use of predecessor information.2.1 Evolution of Distance-Vector AlgorithmsOne of the earliest implementations of DVA was the routing protocol implemented in theARPANET in the early 1970s. In this protocol, every router in the network maintainsa distance and a routing table. The shortest path information for each destination ismaintained in node's routing table. Every node broadcasts its routing table informationperiodically to its neighboring nodes. A router examines its routing table to determine theshortest path to a particular destination before sending a packet to that destination.One of the basic problems with this type of routing algorithm is the counting-to-in�nityproblem, in which a node counts to a maximum value (in�nity) before converging after anode failed or a network partition. Many approaches have been proposed in the past tosolve, at least in part, the looping problems of DVAs. A widely known proposal is the split-horizon technique, which avoids ping-pong looping, whereby two nodes choose each otheras the successor to a destination [Ceg75, Sch86]. Another well known technique which hasbeen proposed is the use of hold downs. Both of these approaches do not completely solvethe counting-to-in�nity problem [GLA89]. Some other solutions have also been proposed toovercome this problem [GLA89]. The routing algorithms discussed in this thesis eliminate
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8the counting-to-in�nity problem by maintaining the information about the second-to-last-hop (or predecessor) node as a part of the path information to each destination.The periodic updates sent by a node to all its neighboring nodes can be of two types{ event driven or timer-driven. In event driven routing, updates are sent when a certainevent occurs. Typical events are the changing of a local metric value, or the reception ofa routing update from a neighbor. In timer driven routing, updates are sent periodically,whether there is any change in the status of the network from the last update sent or not.Typically, updates are sent immediately after an event and when timer expires if no eventoccurs. For ease of exposition, we opt for event-driven routing updates in all our routingalgorithms.2.2 Network ModelA computer network G is modeled as an undirected graph represented as G(V;E), whereV is the set of nodes and E is the set of edges or links connecting nodes. Each noderepresents a router and is a computing unit involving a processor, local memory, and inputand output queues with unlimited capacity. Extending the model to account for end node(link) destinations attached to routers is trivial. A functional bidirectional link connectingnodes i and j is denoted by (i; j) and is assigned a positive weight in each direction. A link isassumed to exist in both directions at the same time. All messages received (transmitted)by a node are put in the input (output) queue on a �rst-come-�rst-serve basis and areprocessed in that order. An underlying protocol assures that:� Every node knows who its neighbors are; this implies that a node within a �nite timedetects the existence of a new neighbor or the loss of connectivity with a neighbor.� All packets transmitted over an operational link are received correctly and in theproper sequence within a �nite time.� All update messages, changes in the link-cost, link failures and link recoveries areprocessed one at a time in the order in which they occur.
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9Each node is given a unique identi�er. Any link cost can vary in time but is alwayspositive. The distance between the two nodes in the network is measured as the sum of thelink costs of the shortest path between nodes.When a link fails, the corresponding distance entry in a node's distance and routingtables are marked as in�nity. A node failure is modeled as all links incident on that nodefailing at the same time. A change in the operational status of a link or a node is assumedto be noti�ed to its neighboring nodes within a �nite time. These services are assumed tobe reliable and are provided by the lower level protocols.2.3 Notations and De�nitionsA path from node i to node j is a sequence of nodes where (i; n1), (nx; nx+1), (nr; j) arelinks in the path. A simple path from i to j is a sequence of nodes in which no node isvisited more than once. A implicit path from i to j is a path that is derived from predecessornode information. The paths between any pair of nodes and their corresponding distanceschange over time in a dynamic network. At any point in time, node i is connected to nodej if a path exists from i to j at that time. The network is said to be connected if every pairof operational nodes are connected at a given time.Throughout the paper the following notation is used:j: Destination node identi�er j 2 Nb; k: Neighbor nodesDijk: Distance entry at node i to destination j through neighbor kin the distance tableDij : Distance entry at node i to destination j in the routing tablepijk: Predecessor entry from i to j through k in the distance tablepij : Predecessor entry from i to j in the routing tablesij : Successor from node i to jdik: Link cost from i to neighbor k
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10Ni: Set of neighbors of iFDij(t): Distance value used by node i to evaluate feasibility at time trijk: Reply status ag for a query sent by node i for j through kSj(t): Successor graph of G at i for destination j at time tCj(t): Loop formed for destination j at time tPxj(t): Path from node x to node j implied by successor entries at time tRDij(t): Distance from node i to node j at time tRH ij(t): Predecessor of node j along the path from i to j at time tuij(t): Update agtagij(t): Tag at node i for destination j at time tH(I; d): Maximum number of links in the loop-free path from node i having a lengthnot exceeding d in the �nal topologyT (i): Time by which all messages that are in transit at time T (i� 1) have reachedthe destinationThe time at which the value of a variable applies is speci�ed only when it is necessary.The successor to destination j for any node is simply referred to as the successor of thatnode, and the same reference applies to other information maintained by a node. Similarly,updates, queries and responses refer to destination j, unless stated otherwise.In the algorithm's description, the time at which the value of a variable X of the algo-rithm applies is speci�ed only when it is necessary; the value of X at time t is denoted byX(t).The next two chapters describe the two algorithms, PFA and LPA, and provide theirpseudocode and formal proofs for correctness and complexity.
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11Chapter 3A Path-Finding AlgorithmIn this chapter, we present a new algorithm, called path-�nding algorithm (PFA), whichsubstantially reduces the number of cases in which routing loops can occur. A formal proofof PFA is presented and the worst-case complexity of the algorithm is analyzed.The rest of this Chapter is organized as follows. The next section describes the operationof the algorithm with an example. Section 3.2 gives the formal proof for correctness ofPFA. Section 3.3 discusses the time and communicational complexity of PFA. Section 3.4compares PFA qualitatively with Humblet's path-�nding algorithm. Finally, Section 3.5concludes the Chapter with a brief summary.3.1 PFA DescriptionPFA is speci�ed in pseudocode form in Figure 3.1. The main feature of PFA is the notionof second to last hop or predecessor. Using predecessor information, each node can infer thepath implicit in a distance entry without excessive overhead.Each node maintains a distance table and a routing table. The distance table is a ma-trix containing the distance and predecessor entries (path information) for each destinationthrough all the neighboring nodes. The routing table is a column vector containing theminimum distance entry for each destination, and its corresponding predecessor, and suc-cessor nodes (this can be extracted from the distance table). An update message mainlycontains the source and the destination node identi�ers, and the distance and predecessorfor one or more destinations.
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12When a node i receives an update message from its neighbor k regarding destination j,the distance and predecessor entries in the distance table are updated (Step 1). A uniquefeature of PFA is that node i also determines if the path to destination j through any ofits other neighbors fb 2 Nijb 6= kg includes node k. If the path implied by the predecessorinformation reported by node b includes node k, then the distance entry of that path is alsoupdated as Dijb = Dikb +Dkj and the predecessor is updated as pijb = pkj . Thus, a node candetermine whether or not an update received from k a�ects its other distance and routingtable entries. Before updating the routing table, node i checks for all simple paths to jreported by its neighbors, and the shortest of these simple paths becomes the path from ito j (Procedure RT Update). This implies that, at each stage, node i checks for the simplepaths and avoids loops. Link or node failures, recoveries, and link-cost changes are handledsimilarly (Steps (5), (6) and (7)).In contrast to PFA, which makes node i check the consistency of predecessor informa-tion reported by all its neighbors each time it processes an event involving a neighbor k, allprevious path-�nding algorithms [CRKGLA89, CKGLA92, RF91, Hum91] check the con-sistency of predecessor only for the neighbor associated with the input event. This uniquefeature of PFA accounts for its fast convergence after a single link-cost change, as illus-trated in Section 5, because it eliminates more temporary looping situations than previouspath-�nding algorithms or even BGP [RL94] could.The following example helps illustrate this. Consider the four-node network shown inFigure 3.1(a). Assume that PFA is used in this network and that all links and nodes havethe same propagation delays. The costs of the links are as indicated in the �gure; links havethe same cost in both directions. Here, j is the destination node, k and b are neighborsof node i. The arrows next to links indicate the direction of update messages, the label inparentheses gives the distance to the destination and the predecessor to the destination j.The �gure focuses on the update messages regarding destination j only.When link (j; k) fails, nodes j and k send update messages to the neighboring nodesas shown in Figure 3.1(b). In this example, node k is forced to report an in�nite distance



www.manaraa.com

13Procedure Update(i; k)when router i receives an update on link (i; k)(0) beginupdate=0; RTEMPi  �;DTEMPi;b  � for all neighbors b(1) for each triplet (j;Dkj ; pkj ) in V k;i; j 6= i dobegin Dijk  dik +Dkj ; pijk  pkj ;(2) for all neighbors bif k is in the path from i to j inthe distance table through neighbor bthen Dijb  Dikb +Dkj ; pijb  pkjend(3) beginif there are b and j such that(Dijb < Dij) or ((Dijb > Dij) and (b = sij));then Call RT Update;end(4) beginif (RTEMPi 6= �) thenfor each neighbor b dobegin for each triplet t = (j;Dij ; pij ) in RTEMPi doif b is not in the path from i to jthen DTEMPi;b  DTEMPi;b [ t;send DTEMPi;b to neighbor b;endendendProcedure Change(i; k; dik)when dik changes value do(7) beginupdate the distance table entry at node iDijk  dik +Dkj ; pijk  pkj ;Go to Step (2);endProcedure Failure(i; k)when link (i; k) fails do(5) begindelete column k in Diif there is a destination j such that k = sijthen Call RT Update;Go to Step (4);end

Procedure Recover(i; k; dik)when link (i; k) comes up do(6) begininsert column k in Direspond as if a single entry in V k;i = (k; dik; i)is received on link (i; k)copy whole routing table into DTEMPi;k andsend it to kendFunction In Path(Node,Neighbor,Dest, neigh)beginp pNodeDest;neigh;if (p = Node) then return(false);else if (p = Neighbor) then return(true);else In Path(Node,Neighbor,p,neigh);endProcedure RT Updatebegininitialize all destinations to be unmarked;for any unmarked destination j dobeginif there is no �nite distance in row jthen mark j as undetermined;else beginTV  �;pick any minimum distance Dijbc pijb; TV  TV [ c;repeat c picb; TV  TV [ c;until Dicb is not minimum of rowc or picb = i or picb is markedif ((picb is marked as undetermined) or(Dicb is not minimum of row c))then mark each node in TV as undeterminedelse beginmark each node in TV as determinedDij  Dijb; pij  pijb; sij  b;endendendcopy the routing vector to RTEMPi if the distance orpredecessor has changedendFigure 3.1: PFA Speci�cationto j, because nodes b and i have reported node k as part of their paths to destinationj. Figure 3.1(c) shows that node b processes node k's update and selects link (b; j) todestination j; This is the case because of step(2), which forces node b to purge any path tonode j involving node k. Figure 3.1(c) also shows that when node i gets node k's updatemessage, it updates its distance table through neighbor k, and checks for the possible pathsto j through any other neighboring nodes; thus, it examines the available paths throughits other neighbor b and updates the distance and the routing table entries accordingly.This results in the selection of the link (i; j) to the destination j (Figure 3.1(c)); again thisis due to step(2), which purges all paths to destination j involving node k. When node
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Figure 3.2: Example of PFA's operationi receives node b's update reporting an in�nite distance, node i need not have to updateits routing table because it already has correct entries in its distance and routing tables(Figure 3.1(d)). Similarly, the updates that node k sends reporting a distance of 11 to nodej will not impact on nodes i and b. This illustrates how step (2) (in the pseudocode) helpsin the reduction of formation of temporary loops in explicit paths.For PFA to work, some assumptions on the behavior of links and nodes must hold.1. A lower-level protocol is responsible for maintaining the status of the link and handlingof the transmission of messages.2. The time interval during which a link is up is known as the link up period (LUP).3. Messages are sent and received by a node only during a LUP.4. There are no LUPs at a node when a node is down.5. All nodes are initially down.6. Messages received by a node are processed in the order of their arrival.7. Link lengths are always positive and an in�nite length represents a down link.
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158. Time T 0 is de�ned such that between the time interval 0 and T 0 links and nodes goup and down and the cost of the link changes.By assumption, a node processes any input event within a �nite time; furthermore, eachinput event is processed independent of any other event. Therefore, there must be a timeT when links have the same status at both ends and there are no changes after time T .De�nition 1 The link weight dij for link(i; j) is extracted from the distance table Dv at anode v if there is a column k in Dv such that dij = Dkvj � Dkvi and pkvj = i. Similarly, thelink weight for link (i; j) can be extracted from the routing table if dij agrees Dvj �Dvi , wherepvi = i.3.2 Correctness of PFAIn this section, we prove that PFA terminates in such a way that the distance to any othernode maintained in the routing table in each node is the shortest distance of the �nal graphand the distance to any unreachable node is marked as undetermined.Lemma 1 If a routing table is generated by PFA based on the distance table, any linkweight that can be extracted from this routing table can be extracted from a column in thedistance table.Proof: Let dij be the link weight extracted from the routing table of node v. ByDe�nition 1, the cost of a link can be extracted from the routing table as (Dvj � Dvi ),predecessor pvj = i and successor svi = k, from procedure RT Update. Procedure RT Updaterequires each distance in the routing table to be the minimum among the rows correspondingto the same destination in the distance table entry of a node as de�ned by the distributedBellman-Ford algorithm. Therefore, the lemma is true. Q.E.D.
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16Lemma 2 When a node comes up and initializes its distance table, the link weight thatcan be extracted from any of its distance table entries is the weight of the link.Proof: A node coming up can be viewed as all the links connected to that node comingup. Initially, when a node is down, all its distance-table entries have an in�nite distance.A link coming up is recorded as a single entry in the distance vector of the distance table,which is nothing but the weight of the link as given in Step (6) of the algorithm. Therefore,because the cost of any non-existent link can be assumed to be in�nity, the link weightextracted from any column in the distance table of a node that comes up is the weight ofthat link. Therefore, the lemma is true. Q.E.D.Lemma 3 The change in the cost of a link will be reected in the distance and the routingtables of a node adjacent to that link after a �nite time T .Proof: The change in the link cost can be due to a link coming up, a link going down,or the change in the link cost.When a link comes up, a new column entry will be added to the distance table and thenew link cost will be assigned to the corresponding entry in the distance table (Step (6)).Procedure RT Update will be called, which eventually updates the routing table entry.When a link goes down, the column entry will be deleted and the distance entries in thedistance table will be set to1 (Step (5)). Procedure RT Update again updates the routingtable entries accordingly.When the link cost changes, the distance entry in the distance table is updated to reectthe new link cost (Step (1) and Step (2)). These changes will be updated in the routingtable again by procedure RT Update.From the assumptions, we know that all the link-cost changes occur in the time interval[0; T 0). Therefore, there exists a time T > T 0 when the adjacent node of a link updatesits tables. This implies that link cost changes will be reected in the distance and routingtables after a �nite time T .
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17 Q.E.D.Property 1 After a �nite time interval T , the routing table structures at all nodes willform the �nal shortest path.Proof: The proof consists of the following two parts:1. The old topology information present in node's routing and distance tables is updated.2. The shortest-path trees are eventually computed.Let the initial time be T (0) = T . Let T (K) be the time by which all messages thatare in transit at time T (K � 1); K � 0, have arrived at their destination, and have beenprocessed.The proof is done by induction on K. At time K = 0, the property holds true. Assumethat the property is true for 0 � K �M .A path ofM +1 links is the concatenation of an adjacent link and a path with M links.From the assumptions, by time T (M +1), the routing trees at time T (M) of all nodes havebeen communicated to their neighboring nodes. By Lemma 3, these link cost changes willbe updated in node's distance and routing tables within a �nite time T . This proves the�rst part of the property.The change in the link cost will result in a routing table update (in procedure RT Update)as required. When a node has to select a new path, the minimum-in-row entry for thatdestination node is chosen from the distance table entries resulting in the shortest path inthe �nal graph all along the way. This implies that the routing table structures at all nodesform the �nal shortest path. Q.E.D.Theorem 1 If the distance entries in the distance and routing tables are �nite, then apath can be extracted from the distance and routing table entries and this extracted path isloop-free.
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18Proof: Let T (K = 0) be the initial time when the algorithm begins execution. Thetheorem is true for K = 0 since no link exists between nodes at time t = 0.Assume that the property is true for T (M); 0 � M � K � 1. By time T (K), all therouting changes at time T (K�1) would have been communicated to all nodes (assumption).No node will be marked as undetermined as all the distance entries are �nite.When a node comes up within the time T (K � 1), step (6) of the algorithm will com-municate this change in the link cost in �nite time (by Lemma 3). As all the entries in thetable are �nite, a path can be extracted from any node i to any other node j by traversingthrough a node.When a particular link is selected as a path from i to j, the loop-freedom of the pathis checked in step 2 (procedure In Path) and procedure RT Update. An update messageabout link cost change will be sent to the neighbor. The loop-freeness of the update messagescan be veri�ed by traversing from destination node to the source node using predecessorinformation present in each entry of the distance and routing tables.Therefore, the paths in the �nal graph are loop-free. Q.E.D.3.2.1 Distance ConvergenceIn this subsection, we prove that PFA terminates in such a way that the distance to anyother node maintained in the routing table in each node is the shortest distance of the �nalgraph and the distance to any unreachable node is marked as undetermined.Property 2 If node j is not connected to node i in the �nal topology, then the distancebetween the two nodes is equal to in�nity for all time after T (H(i;1) + 1).Proof: If a node i does not have a path to node j, the distance entries in node's tableswill be set to1 (from the algorithm description). By de�nition, H(i; d) gives the maximumnumber of links in the path from i whose distance to any other node is less than or equalto d in the �nal topology. This implies H(i; d) is a �nite quantity, because G is �nite.
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19From Property 1, all the paths with links less than or equal to H(i;1) will have their�nal length by time T (H(i;1)+ 1). This proves Property 2. Q.E.D.Theorem 2 The algorithm terminates in �nite time after the last topological change hap-pened.Proof: Assume that PFA does not terminate. This implies that there must be anin�nite number of messages sent after the last topological change. These in�nite messagesmust have �nite distances since from Property 2 if the distance between the two nodes isequal to in�nity, the algorithm converges. Moreover, from Theorem 1, the path extractedfrom the distance table must be a simple path. Thus, there must be some neighbor b thatsends �nite distances an in�nite number of times to node i for node i to send messageswithout stopping.Each time node i sends a message, it can be due to any one of the following reasons1. It receives Dbj from b and Dij = Dbj + dib where dib is the link weight2. Dij has been in node i's distance table when it receives a message from b3. neighbor b is in the path from i to j through another neighbor k(6= b) and Dijk =Dibk +Dbj (Step (2))If the �rst case happens in�nite times, node b sendsDbj in�nite times andDbj = Dij�dib <Dij because dib > 0.The second case can happen in a situation where Dij is not stable. This means that Dijis changed forever, which is similar to the �rst case in that there must be a neighbor b0 suchthat b0 sends Db0j in�nite times and Db0j = Dij � dib0 < Dij , because dib0 > 0. Else, if Dijbecomes stable, then there must be an in�nite number of times in which node i receives adistance that is shorter than Dij .For the third case to happen an in�nite number of times, Dijk must be changed forever.This in turn means that a neighbor has to send the distance vector Dbj in�nite times. Thisreduces to case (2) and eventually to case (1).
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20Consequently, there must be a neighbor b0 sending Db00j in�nite times and Db00j = Dijb00 �dib00 < Dij � dib00 < Dij because dib00 > 0.Therefore, in all of the cases, there must be a node that will in�nitely generate messageswith a distance at least w less than Dij , where w is the minimum weight of the �nal graph.This will consequently contradict that all the distances are positive by recursively applyingthe above argument. Q.E.D.Property 3 When PFA terminates, all the link weights maintained in the distance tablemust be in the �nal graph.Proof: This proof is done by induction. When a node comes up, its distance entries inthe distance and routing tables are maintained correctly by Lemmas 1 and 2 and Property 1.If a link is not in the �nal graph, it implies that a node must have detected a link failurethat caused it to delete the corresponding column entry from the distance table entry of thenode and the distance is marked as in�nity (step (5) of the algorithm). If the distance in the�nal graph dij is di�erent from the earlier distance, node i must have been noti�ed aboutthis link-cost change by its neighbor. Thus, the correct distance entries are maintained inthe �nal graph for all adjacent nodes.Assume that the result is true for nodes that are k hops away from i.We will show by induction that the result is true for nodes that are k + 1 hops awayfrom i. Let j be a node that is k + 1 hops away from node i and a be a node that is khops away from i. Since all nodes that are k hops away from i maintain the distance entriescorrectly, the distance entry is correct for node a. The distance from j to i is the sum of djaand Dai (step 1 of the algorithm). This is nothing but the minimum in row of the distancesfrom i to j and hence is the shortest-path from i to j. Therefore, this distance entry willbe present in the �nal graph unless the link has gone down before the algorithm terminatesin which case, an in�nite distance will be maintained. This proves the property. Q.E.D.
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21Theorem 3 When PFA terminates, the distance for any node i to any other node j in therouting table of node i is the shortest distance from i to j in the �nal graph and the successorwill be maintained correctly; furthermore, the distance from node i to any unreachable nodeis marked as undetermined.Proof: We prove the theorem by induction.From Lemma 3, the weight of any link must be maintained by its adjacent node. Whena link comes up, the cost of the link will be assigned to the distance table entry (neighbornode) and the predecessor will be initialized to be the source node itself (step 6 of thealgorithm). The distance table is checked to see whether its distance entry is smaller thanthe routing table entry and the routing table is updated according to procedure RT Updatewith successor and predecessor entries properly set. If a link is in the path to the destinationthrough any other neighboring nodes, then the distance and the routing table entries arealso updated.Assume that the result is true for any node j which is k hops away from node i. We willshow by induction that the result is true for a node k + 1 hops away from i. Consider anynode j that is k+1 hops away from i. There must be a neighbor b of node j that is k hopsaway from i and that maintains correct distance and routing table entries. Let djb denotethe distance between node j and its neighbor node b which are k+1 and k hops away fromi respectively. Let Dib be the distance from i to b. Dib is the shortest path from i to b as Dibis the minimum in row of b and each distance table entry represents an existent path.Since b is a neighbor of j, Dij = Dib + dbj is the shortest path from i to j, with dbjbeing the minimum in row entry. The predecessor path will also be maintained correctly(from step 1). Furthermore, any node x in the shortest path from i to j must also have thesubpath from x to i as the shortest path because it is the minimum in the row of x.Procedure RT Update is called in the update routine after updating all the distancetable entries of that node. This routine picks up a minimum entry through one of itsneighbors and will have a successful trace for the destination node j and thus will haveDij = Diji0 = Di0j + dii0 = Dij and sij = b.
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22 Q.E.D.3.3 Complexity of PFAThe number of messages generated is bounded by an exponential function on V , the numberof nodes, a polynomial of degree E, and a linear function of the number of topologicalchanges. Some of the advantages/improvements of PFA are� The storage required is the same as that of previous path-�nding algorithms for eachnode.� PFA can detect network partitions faster than any previous path-�nding algorithm,because a node updates its entire distance table for each update message receivedfrom its neighbor.� Counting-to-in�nity problem is eliminated.� PFA's time complexity is O(h) in the worst-case where, h is the height of the routingtree.Theorem 4 below proves this result.Time complexity is de�ned as the largest time that can elapse between the momentT when the last topology change occurs and the moment at which all nodes have �nalshortest path and distances to all other nodes. Communication complexity is de�ned asthe maximum number of node identities exchanged (messages) after time T before the �nalgraph is reached.Consider Figure 3.3. The weight of the links are as indicated. Assume nd is the destina-tion node. Node n1, n2, n3 and n4 will have the shortest path node nx before link (nd,nx)fails. After the link failure, nodes n1, n2, n3 and n4 immediately identify that the only pos-sible way to reach the destination node nd is through the link (ni,nd) for i = 1,2,3,4 uponreceiving an update message from node nx about the link failure, instead of going throughan intermediate step of selecting the path through nodes n2, n3 and n4 respectively as in
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Figure 3.3: Complexity of PFAthe case of any other path-�nding algorithm. That is, a node need not have to wait for anupdate message from the neighbor n2, n3 and n4 before arriving at the �nal graph. Thisreduces the number of update messages required.Theorem 4 The time complexity for a single failure or change for PFA is O(h) in theworst-case, where h is the maximum height of the routing tree experienced during the com-putation.Proof: Let the source node be i and the destination node be j. Let the failed linkbe (n;m) and node m is downstream node to node n. There are four possible situationsinvolving the shortest path.1. (n;m) is not on the shortest path and its length does not change enough to changethe shortest path.2. (n;m) is not on the shortest path and its length decreases enough that it becomespart of the shortest path.3. (n;m) is on the shortest path and its length does not change enough to modify theshortest path (although the length of the shortest path changes).



www.manaraa.com

244. (n;m) is on the shortest path and its length increases enough that the shortest pathchanges.A node with the initial shortest path not going through the changed link (Case (1)) doesnot change its routing table since the original shortest path is not changed and the changein link cost has resulted only in the increase in the path length through other routes.In Case (2), a node will be aware of the change in link cost along the shortest path aftera delay not exceeding the number of links on the new shortest path. In Case (3) the changewill be noticed in the worst case after a delay of at most the number of links in the shortestpath.Let node nk with the original shortest path through the changed link be k hops awayfrom node n on the initial shortest path. When a link cost changes or the link fails,node containing the failed link selects a new neighbor (changes the successor) for a pathto destination j. This changes the routing table entry at node n and the routing vectorgenerated due to link failure will be sent to all its neighbors. Each of these neighbors willupdate their table entries and the change in link cost propagates. This process continuesuntil a stable node which does not change its successor is encountered. The tables areupdated either on the receipt of the update message or if the distance update messagereceived from a node's neighbor has any e�ect on node's other distance table entries. Thedistance of the stable node found in the path from i to j in the new shortest path is boundedby h, the height of the tree. Therefore, in the worst case, the number of steps required fora node to converge to its correct distance is O(h). Q.E.D.3.4 Comparison with Humblet's AlgorithmHumblet [Hum91] has presented a path-�nding algorithm in which a breadth-�rst-searchon the nodal distance tables is done to construct the routing tables. He has also pointedout how other previous path �ndings algorithms [RF91, CRKGLA89] compare with his.
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(b)Figure 3.5: Routing table at node i for Humblet's AlgorithmThe comparison of the algorithms are done based on cost of the links. We illustrate thedi�erences between this algorithm and PFA using Figure 3.4, 3.5, 3.6.As explained earlier, the predecessor information in node's distance table column entryand the routing table entries can be used to derive the complete path to any destination.The union of all the derived paths in any column of the distance table or routing tableat any node forms a tree (Theorem 1). The individual node routing trees obtained fromHumblet's algorithm for the topology of Figure 3.4 is shown in Figure 3.5(a). The algorithm�rst attaches the trees in Figure 3.5(a), derived from each distance table column to node iitself and then performs a breadth-�rst-search on the combined tree. Also, each node canbe visited only once. The resulting con�guration is as in Figure 3.5(b).
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27and has a worst-case complexity of O(h) for a single resource recovery or failure, h beingthe height of the routing tree.
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28Chapter 4Loop-Free Path-FindingAlgorithmIn this chapter, we present a path-�nding algorithm (LPA) that is loop-free at every instant.This is the �rst algorithm that eliminates the formation of temporary loops without theneed for inter-nodal synchronization spanning over multiple hops or the speci�cation ofcomplete path information.LPA is built on two basic mechanisms { using predecessor information to eliminatecounting-to-in�nity and blocking temporary routing loops using an inter-neighbor synchro-nization method similar to the one proposed in [GLA92].Using the predecessor information, each router can infer if the path corresponding toa distance-table or routing-table entry includes the router itself, i.e., if there is a loop inthe path o�ered by a neighbor. This feature eliminates the counting-to-in�nity problempresent in DBF. Furthermore, a router detects a temporary loop within a �nite time thatdepends on the speed with which correct predecessor information reaches a router, and noton the distance values of the paths o�ered by its neighbors; therefore, temporary loops aredetected much faster than in DBF and its variations.In LPA, a router which decides that a loop may be formed if it changes its successoris asked to block such a loop by reporting to all its neighbors an in�nite distance for adestination, and by waiting for those neighbors to acknowledge its message with their owndistances and predecessor information, before a router changes its successor. Because ofthe overhead involved, a router should not send a query every time it has to change its
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29successor to a destination; a router decides when to block a potential loop by comparingthe distances reported by its neighbors against a feasible distance, de�ned to be the smallestvalue achieved by a router's own distance since the last query sent by a router. A routeris forced to block a potential loop with a query only when no neighbor reports a distancesmaller than router's own feasible distance; this feature accounts for the low overheadincurred in LPA to accomplish loop-free paths at every instant.In contrast to many prior loop-free routing algorithms [GLA92, GLA93, JM82], queriespropagate only one hop in LPA. Furthermore, updates and routing table entries in LPArequire a single node identi�er as path information rather than a variable number of nodeidenti�ers as in prior algorithms [GLA92].The rest of the chapter is organized as follows. The next section gives a descriptionof LPA and an example illustrating key aspects of LPA's operation; Sections 4.3 and 4.4provide a detailed proof of LPA's loop-freedom and convergence to correct routing tableentries, respectively; Section 4.5 addresses the complexity of LPA; and �nally, Section 4.6summarizes the results.4.1 LPA DescriptionEach router maintains a distance table, a routing table and a link-cost table. The distancetable at each router i is a matrix containing, for each destination j and for each neighbork of router i, the distance and the predecessor reported by router k, denoted by Dijk andpijk, respectively.The routing table at router i is a column vector containing, for each destination j theminimum distance (denoted by Dij), predecessor (denoted by pij), successor (denoted bysij), and a marker (denoted by tagij) used to update the routing table. For destinationj, tagij speci�es whether the entry corresponds to a simple path (tagij = correct), a loop(tagij = error) or a destination that has not been marked (tagij = null).The link-cost table lists the cost of each link adjacent to a router. The cost of the linkfrom i to k is denoted by dik and is considered to be in�nity when a link fails.
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30An update message from router i consists of a vector of entries; each entry speci�esan update ag (denoted by uij), a destination j, the reported distance to that destination(denoted by RDij), the reported predecessor in the path to the destination (denoted by rpij).The update ag indicates whether the entry is an update (uij = 0), a query (uij = 1) or areply to a query (uij = 2). The distance in a query is always set to 1.The implicit path information from a router to any destination can be extracted from thepredecessor entries of router's distance and routing tables. In the speci�cation of LPA, thesuccessor to destination j for any router is simply referred to as the successor of a router,and the same reference applies to other information maintained by a router. Similarly,updates, queries and replies refer to destination j, unless stated otherwise.Figures 4.1 and 4.2 specify LPA in pseudocode. The rest of this section provides aninformal description of LPA.The procedures used for initialization are Init1 and Init2; ProcedureMessage is executedwhen a router processes an update message; procedures linkUp, linkDown and linkChangeare executed when a router detects a new link, the failure of a link, or the change in thecost of a link. We refer to these procedures as event-handling procedures. For each entry inan update message, Procedure Message calls procedure Update, Query, or Reply to handlean update, a query, or a reply, respectively. An important characteristic of all the event-handling procedures is that they mark tagij = null for each destination j a�ected by theinput event.When router i receives an input event regarding neighbor k (an update message fromneighbor k or a change in the cost or status of link (i; k)) it updates its link-cost tablewith the new value of link dik if needed, and then executes procedure DT . This procedureupdates Dijk = Dkj + dik and pijk = pik for each destination j a�ected by the input event. Inaddition, it determines whether the path to any destination j through any of other neighborof router i includes neighbor k. If the path implied by the predecessor information reportedby router b to destination j includes router k, then the distance entry of that path is updatedas Dijb = Dikb +Dkj and the predecessor entry is updated as pijb = pkj .
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31After procedure DT is executed, the way in which router i continues to update itsrouting table for a given destination depends on whether it is passive or active for thatdestination. A router is passive if it has a feasible successor, or has determined that nosuch successor exists and is active if it is searching for a feasible successor. A feasiblesuccessor for router i with respect to destination j is a neighbor router that satis�es thefeasibility condition (FC). When router i is passive, it reports the current value of Dij in allits updates and replies. However, while router i is active, it sends an in�nite distance inits replies and queries. An active router cannot send an update regarding the destinationfor which it is active, this is because an update during active state would have to report anin�nite distance to ensure that the inter-neighbor synchronization mechanism used in LPAprovides loop freedom at every instant.Feasibility Condition (FC): If at time t, router i needs to update its current successor,it can choose as its new successor sij(t) any router n 2 Ni(t) such that i Dijn(t) + din(t) =Dmin(t) =MinfDijx(t)+dix(t)jx 2 Ni(t)g and Dijn(t) < FDij(t). If no such neighbor existsand Dij(t) <1, router i must keep its current successor. If Dmin(t) =1 then sij(t) = null.The successor graph for destination j 2 G, denoted by Sj(G), is a directed graph inwhich nodes are the same nodes of G and where directed links are determined by thesuccessor entries in the nodal routing tables. Loop freedom is guaranteed at all times inG if Sj(G) is always a directed acyclic graph. If G is connected in steady state, when allrouting tables are correct, Sj(G) must be a directed tree whose links point to j.If router i is passive when it processes an update for destination j, it determines whetheror not it has a feasible successor, i.e., a neighbor router that satis�es FC.If router i �nds a feasible successor, it sets FDij equal to the smaller of the updatedvalue of Dij and the present value of FDij . In addition, it updates its distance, predecessor,and successor using procedure TRT . This procedure ensures that any �nite distance in therouting table corresponds to a simple path by selecting as the successor to any destinationj a neighbor k that satis�es the following property:
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32Property 4 Router i sets sij = k at time t only if Dixk(t) � Dixp(t) for every neighborp other than k and for every node x in the path from i to j de�ned by the predecessorsreported by neighbor k.Let P ijk(t) denote the path from k to j de�ned by the predecessors reported by neighbork to router i and stored in router i's distance table at time t. Procedure TRT implementsProperty 4 by traversing P ijk(t) from j back to k using the predecessor information. Thispath traversal ends when either a predecessor x is reached for which tagix = correct or error,or neighbor k is reached. If tagix = error, then tagij is set to error too; otherwise, theneighbor k or a correct tag must be reached, in which case tagij is set to correct.After updating its routing table, router i prepares an update to its neighbors if itsrouting table entry changes.Alternatively, if router i �nds no feasible successor, then it updates FDij = 1 andupdates its distance and predecessor to reect the information reported by its currentsuccessor. If Dij(t) =1, then sij(t) = null. Router i also sets the reply status ag (rijk = 1)for all k 2 Ni and sends a query to all its neighbors. Router i is then said to be active, andcannot change its path information until it receives all the replies to its query.Queries and replies are processed in a manner similar to the processing of an updatedescribed above. If the input event that causes router i to become active is a query fromits neighbor k, router i sends a reply to router k reporting an in�nite distance. This isthe case, because router k's query, by de�nition, reports the latest information from routerk, and router i will send an update to router k when it becomes passive if its distance issmaller than in�nity. A link-cost change is treated as a number of updates.Once router i is active for destination j, it may not have to do anything more regardingthat destination after executing procedures RT and DT as a result of an input event.However, when router i is active and receives a reply from router k, it updates its distancetable and resets the reply ag (rijk = 0).Router i becomes passive at time t when rijk(t) = 0 for every k 2 Ni. At that time, routeri can be certain that all its neighbors have processed its query reporting an in�nite distance
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33and router i is therefore free to choose any neighbor that provides the shortest distance,if there is any; or router i has found a feasible successor through one of its neighborsk 2 Ni. If such a neighbor is found, router i updates the routing table as the minimum indistance-table row for destination j and also updates FDij = Dij .A router does not wait inde�nitely for replies from its neighbors because a router repliesto all its queries regardless of its state. Thus, there is no possibility of deadlocks due to theinter-neighbor coordination mechanism.If router i is passive and has already setDij =1 and receives an input event that impliesan in�nite distance to j, then router i simply updates Dijk and dik and sends a reply torouter k with an in�nite distance if the input event is a query from router k. This ensuresthat updates messages will stop in G when a destination becomes unreachable.Router i initializes itself in passive state with an in�nite distance for all its knownneighbors and with a zero distance to itself. After its initialization, router i sends updatescontaining the distance to itself to all its neighbors.When router i establishes a link with a neighbor k, it updates its link-costs table andassumes that router k has reported in�nite distances to all destinations and has replied toany query for which router i is active; furthermore, if router k is a previously unknowndestination, router i initializes the path information of router k and sends an update tothe new neighbor k for each destination for which it has a �nite distance. When router iis passive and detects that link (i; k) has failed, it sets dik = 1, Dijk = 1 and pijk = null;after that, router i carries out the same steps used for the reception of a link-cost changemessage in passive state. When router i is active and loses connectivity with a neighbork, it resets the reply ag and resets the path information i.e., assumes that the neighbor ksent a reply reporting an in�nite distance.It follows from this description of router i's operation that the order in which router iprocesses updates, queries and replies does not change with the establishment of new linksor link failures. The addition or failure of a router is handled by its neighbors as if all thelinks connecting to that router were coming up or going down at the same time.
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34Procedure Init1when router i initializes itselfdo beginset a link-state table with costs of adjacent links;N  fig;Ni  fx j dix <1g;for each (x 2 Ni)do beginN  N [ x; tagx  null;six  null; pix  null;Dix  1; FDix  1endsii  i; pii  i; tagii  correct;Dii  0; FDii  0;for each j 2 N call Init2(x, j);for each (n 2 Ni) do add (0, i, 0, i) to LISTi(n);call SendendProcedure Init2(x, j)beginDijx  1; pijx  null; sijx  null; rijx  0endProcedure Sendbegin for each (n 2 Ni)do beginif (LISTi(n) is not empty)then send message with LISTi(n) to nempty LISTi(n)endendProcedure Messagewhen router i receives a message on link (i; k)begin for each entry (ukj ; j;RDkj ; rpkj ) such that j 6= ido beginif (j 62 N)then beginif (RDkj =1) then delete entryelse beginN  N [ fjg; FDij =1;for each x 2 Ni call Init2(x, j)tagij  null; call DT(j; k)endendelse begintagij  null; call DT(j; k)endendfor each entry (ukj ; j;RDkj ; rpkj ) leftsuch that j 6= ido case of value of uij0: [Entry is an update]call Update(j, k)1: [Entry is a query]call Query(j, k)2: [Entry is a reply]call Reply(j, k)endcall Sendend

Procedure Link Up (i; k; dik)when link (i; k) comes up do begindik  cost of new link;if k 62 N then beginN  N [ fkg; tagik  null;Dik  1; FDik  1;pik  null; sik  null;for each x 2 Ni do call Init2(x, k)endNi  Ni [ fkg;for each j 2 N do call Init2(k, j);for each j 2 N � k j Dij <1 do add (0, j, Dij , pij) to LISTi(k);call SendendProcedure Link Down(i; k)when link (i; k) fails do begindik  1;for each j 2 N do begincall DT(j, k);if (k = sij) then tagij  nullenddelete column for k in distance table; Ni  Ni � fkg;delete rijk ;for each j 2 (N � i) j k = sij do begincall Update(j, k)endcall SendendProcedure Link Change (i; k; dik )when dik changes value do beginold dik ;dik  new link cost;for each j 2 N do begincall DT(j, k);for each j 2 Ndo if (Dij > Dijk or k = sij) then tagij  nullendfor each j 2 N do beginif (dik < old)then for each j 2 N � i j Dij > Dijk do call Update(j, k);else for each j 2 N � i j k = sij do call Update(j, k)endcall SendendProcedure DT(j; k)begin Dijk  RDkj + dik ; pijk  rpkj ;for each neighbor b do beginh j;while (h 6= i or k or b) do h pbh;if (h = k) then beginDijb  Dikb + RDkj ; pijb  rpkjendif (h = i) then beginDijb  1; pijb  nullendendendFigure 4.1: LPA Speci�cation4.2 ExampleAs an example of LPA's operation and its loop-freedom property, consider the �ve-nodenetwork depicted in Figure 4.3. In this network, links and nodes have the same processing
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35Procedure Update(j, k)beginif (rijx = 0; 8x 2 Ni)then beginif ((sij = k) or (Dijk < Dij ))then call PU(j)endelse call AU(j, k)endProcedure Reply(j, k)beginrijk  0;if (rijn = 0; 8n 2 Ni)then if ((9x 2 Ni j Dijx <1) or (Dij <1))then call PU(j)else call AU(j, k)endProcedure Query(j, k)begin if (rijx = 08x 2 Ni)then beginif (Dij =1 and Dijk = 1)then add (2, j, Dij , pij) to LISTi(k)else begincall PU(j);add (2, j, Dij , pij) to LISTi(k);endelse call AU(j, k)endProcedure AU(j, k)beginif (k = sij) then beginDij  Dijk ; pij  pijkendend

Procedure PU(j)beginDTmin  MinfDijx 8 x 2 Nig;FCSET  fn j n 2 Ni; Dijn = DTmin; Dnj < FDijg;if (FCSET 6= ;) then begincall TRT(j, DTmin); FDij  MinfDij; FDijgendelse beginFDij =1; rijx = 1 8x 2 Ni; Dij = Dij sij ; pij = pij sij ;if (Dij = 1) then sij  null;8 x 2 Nido beginif (query and x = k)then rijk  0else add (1, j, 1, null) to LISTi(x)endendendProcedure TRT(j, DTmin)beginif (Dij sij = DTmin)then ns sijelse ns b j fb 2 Ni and Dijb = DTming;x j;while (Dix ns = MinfDixb 8 b 2 Nig and Dixns <1 and tagix = null)do x pix ns;if (pix ns = i or tagix = correct)then tagij  correct else tagij  errorif (tagij = correct)then beginif (Dij 6= DTmin or pij 6= pij ns) thenadd (0, j, DTmin, pij ns) to LISTi(x) 8x 2 Ni;Dij  DTmin ; pij  pij ns; sij  nsendelse beginif (Dij <1)then add (0, j, 1, null) to LISTi(x) 8x 2 Ni;Dij  1; pij  null; sij  nullendendFigure 4.2: LPA Speci�cation (Continued)or propagation delays; Q represents the queries, R replies and U indicates updates. Theoperation of the algorithm is discussed for the case in which the cost of ink (a; j) changes.The arrowhead from node x to node y indicates the that node y is the successor of nodex towards the destination j (i.e., sxj = y). The label in parenthesis assigned to node xindicates the feasible distance from x to j (FDxj ), current distance (Dxj ), and predecessorof the path from x to j (pxj ). Steps 1 through 5 of �gure 4.3 depicts the behavior of LPA.Updates and replies are followed by the value of RDxj and rpxj in parentheses. Nodes in the
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Figure 4.3: Example of LPA's Operationactive state are indicated with a circle around them. FDij is always decreasing as long asnode i is in the active state.When node a detects the change in the cost of link (a; j), it determines that it doesnot have a feasible successor as none of its neighbors have a distance smaller than FDaj =1. Accordingly, node a becomes active and sends a query to all its neighbors (Step 1 inFigure 4.3).Nodes b and c also recognize that they do not have a feasible successor. This is achievedin a single step as the node traces through all its neighbors on receipt of an input event.Node b (c) becomes active and sends query to c (b) and reply to a. On the other hand, noded is able to �nd a path to j and replies with the cost of the alternate path to j to node a'squery and updates its distance to j maintaining the same feasible distance.When node a receives replies from all its neighbors, it becomes passive again, andreplies to the queries of nodes b and c with its feasible distance. Having found their feasiblesuccessor, nodes b and c update their path information accordingly. All nodes exchange
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37update messages informing the new path information with their neighbors (Step 4) and the�nal stable topology is shown in Step 5.4.3 Loop Freedom in LPAIt is clear that Sj(G) would be loop free at every instant if a router sent a query reportingan in�nite distance to its neighbors every time it needed to change successors, because norouter would change it before blocking any potential loop by sending an in�nite distance\upstream" the loop. However, it is not obvious that loop freedom is maintained at everyinstant when routers use the feasibility condition FC to decide if they have to send a querybefore changing Sj(G). The following theorem shows that this is the case, i.e., that LPA isfree of loops at every instant. The proof is by contradiction and is essentially the same asthe one presented in [GLA92] for another algorithm.Proposition 1: If a loop is formed in the successor graph Sj(G) for the �rst time at timet, then some router i in that loop must choose an upstream router as its successor at timet. By assumption, Sj(G) is a directed acyclic graph before the loop is formed at time t. Ifa loop has to be formed at time t, there must be at least one router k 2 Sj(G) that changesits successor because the successor information can be changed only when an update occursor when a router detects a change in a link cost or status. This implies that an upstreamrouter will be chosen by some router x in the loop. Q.E.D.Theorem 5 In a network G, the successor graph Sj(G) is loop-free at every instant t.Proof: The proof is by contradiction to the feasibility condition FC.Let G be a stable topology and let the successor graph Sj(G) be loop-free at everyinstant before t. Let Cj(t) be the loop formed in the successor graph at time t. It is evidentthat no loops can be created unless routers change successors and modify the successor
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Figure 4.4: Loop in Ggraph Sj(G), and it follows from proposition 1 that at least one router must change itssuccessor at time t and choose an upstream neighbor for a loop to be formed.At time t = 0, when the network is �rst initialized, each router knows only how to reachitself. This is equivalent to saying that at time 0, Sj(G) is a disconnected graph of one ormore components, each with a single router. Therefore Sj(G) is loop-free at time t = 0.Let t > 0, and assume that a loop Cj(t) is formed when router i makes router a(=s[1; new]) its new successor (Figure 4.4). This implies the path from a to j at time t,denoted by Paj(t), includes Pai(t).Let path Pai(t) consist of a chain of routers fa; s[2; new]; :::; ig, as shown in the Fig-ure 4.4. Router s[k; new] is the kth hop in the path Pai at time t and s[k + 1; new] is its
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39successor at time t. Router s[k; new] sets ss[k;new]j = s[k + 1; new] at time ts[k+1;new] � tand makes no more updates to its successor in the time interval (ts[k+1;new]; t]; therefore,ss[k;new]j (ts[k+1;new]) = ss[k;new]j (t) and Ds[k;new]j (ts[k+1;new]) = Ds[k;new]j (t).Similarly, router s[k + 1; old] is router s[k; new]'s successor just before node s[k; new]becomes the kth hop of path Pai(t) by making router s[k + 1; new] its successor at timets[k+1;new] � t.Because all routers in Cj(t) must have a successor at time t, all of them must be passiveat that time. If all routers in Cj(t) have always been passive before time t, it follows fromTheorem 1 in [GLA92] that router i cannot create Cj(t); the proof of that theorem is basedon the fact that FDij can only decrease as long as router i is passive. The rest of the proofneeds to show that Cj(t) cannot be formed if at least one router in Pai(t) was temporarilyactive before time t.Consider the case in which node s[k; new] 2 Paj(t) is already passive before it up-dates its distance and successor to join Paj(t) at time ts[k+1; new] � t. According to LPA,Ds[k; new]j (ts[k+1; new]) = RDs[k; new]j (ts[k+1; new]); furthermore, according to FC it must betrue that Ds[k; new]j s[k+1; new](ts[k+1; new]) = Ds[k; new]j s[k+1; new](t) < FDs[k; new]j (t)� Ds[k; new]j (ts[k+1; old]):Hence, if router s[k � 1; new] processed the update that node s[k; new] sent at timets[k+1; new], then Ds[k�1; new]j s[k; new] (t) = Ds[k; new]j (t) = Ds[k;new]j s[k+1; new](t) + ds[k;new]s[k+1; new](t) >Ds[k;new]j s[k+1; new](t). However, if s[k� 1; new] did not process the update that node s[k; new]sent at time ts[k+1; new], then Ds[k�1; new]j s[k; new] (t) = Ds[k; new]j (ts[k+1; old]) > Ds[k; new]j s[k+1; new](t),because router s[k + 1; new] must be a feasible successor for router s[k; new] to make itits successor at time ts[k+1; new]. Therefore, if router s[k; new] is already passive when itchanges successor at time ts[k+1; new], then Ds[k�1; new]j s[k; new] (t) > Ds[k; new]j s[k+1; new](t)Alternatively, consider the case in which router s[k; new] is active from time tk < t totime ts[k+1; new] when it becomes passive again to join Paj(t). In this case, regardless of
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40the value of Ds[k; new]j (tk), router s[k; new] must have sent a query to its neighbors withRDs[k; new]j (tk) = 1 at time tk , and all of those neighbors must acknowledge that valueof RDs[k; new]j (tk) before router s[k; new] can make any changes to its distance at timets[k+1; new].When router s[k � 1; new] makes router s[k; new] its successor when it joins Paj(t) attime ts[k; new] � t, it may or may not have processed any update or query sent by nodes[k; new] at time ts[k+1; new] � t when that node joins Paj(t). In the �rst case,Ds[k�1; new]j s[k; new] (t) = RDs[k; new]j (ts[k+1; new]) = Ds[k; new]j (ts[k+1; new])= Ds[k; new]j (t) � FDs[k; new]j (t) > Ds[k; new]j s[k+1; new](t). In the second case, Ds[k�1; new]j s[k; new] (t) =RDs[k; new]j (tk); this is impossible, because RDs[k; new]j (tk) = 1 and node s[k � 1; new]could not have chosen a neighbor reporting an in�nite distance as its successor.From the above argument it follows that if a router s[k; new] is passive at time t, thenDs[k�1;new]js[k;new] > Ds[k;new]js[k+1;new](t). However, because all routers in the loop Cj(t) are passiveat time t, traversing path Pai(t) leads to the erroneous conclusion Dija(t) > Dija(t). Thisimplies that a loop cannot be formed when Sj(G) is loop free before time t and G hasa stable topology. On the other hand, the handling of queries and replies in LPA is notmodi�ed with the establishment or failure of links. Therefore, the theorem is true.Q.E.D.4.4 Correctness of LPATo prove that LPA converges to correct routing-table values in a �nite time, we assumethat there is a �nite time Tc after which no more link-cost or topology changes occur.Lemma 4 LPA is free of deadlocks.Consider the case in which the network has a stable topology. When a router is inthe active state and receives a query from a neighbor, the router replies to the query with



www.manaraa.com

41an in�nite distance. A router updates its distance table entries when either an update ora reply message is received in active state. On the other hand, when a router in passivestate receives a query from its neighbor, it computes the feasible distance and updates itsdistance and routing tables accordingly. If a router �nds a feasible successor, it replies to itsneighbor's query with its current distance to the destination. If a router can �nd no feasiblesuccessor, it forwards the query to the rest of is neighbors and sends a reply with an in�nitedistance to the neighbor who originated the query. Accordingly, in a stable topology, arouter that receives a query from a neighbor for any destination must answer with a replywithin a �nite time, which means that any router that sends a query in a stable topologymust become passive after a �nite time.Consider now the case in which the network topology changes. When a link fails or isreestablished, an active router that detects the link status change simply assumes that arouter at the other end of the link has reported an in�nite distance and has replied to theongoing query. Because an active router must detect the failure or establishment of a linkwithin a �nite time, and because router failures or additions are treated as multiple linkfailures or additions, it follows from the previous case that no router can be active for aninde�nite period of time and the lemma is true. Q.E.D.Lemma 4.1 TRT is correct.Proof: TRT is correct if the tag value given by TRT at router i for destination j equalscorrect. This is true only when the neighbor n that router i chooses as successor to j o�ersthe smallest distance from i to each node in its reported implied path from n to j.First note that, procedure DT is executed before TRT and ensures that router i setsDijb = 1 if its neighbor b reports a path to b that includes i. Therefore, TRT deals withsimple paths only.According to procedure TRT, there are two cases in which a router stops tracing therouting table (a) the trace reaches node i itself (i.e, pixns = i), and (b) a node on the path
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42to j is found with tagix = correct. We prove that the correct path information is reached inboth cases.Case 1: Assume that TRT is executed for destination j after an input event. The tag foreach destination a�ected by the input event is set to null before procedure TRT is executed.Therefore, if TRT is executed for destination j and node i (the source) is reached, the tag ofeach node in the path from i to j through neighbor n must be null. Therefore, the distancefrom i to j through n is the shortest path among all neighbors since node i chooses theminimum in row entry among its neighbors for a given destination j. The lemma is truefor this case.Case 2: If node x1 with tagix1 = correct is reached, then it must be true that either node ior a node x2 with tagix2 = correct is reached from x1.If node i is reached from x1, then it follows from case 1 that neighbor n o�ers thesmallest distance among all of i's neighbors to each node in the implied subpath from n tox1 reported by neighbor n. Furthermore, because x1 is reached from j, node n must alsoo�er the smallest distance among all of i's neighbors to each node in the implied subpathfrom x1 to j reported by n. Therefore, it follows that the lemma is true if node i is reachedfrom x1 (from case 1). Otherwise, if x2 is reached, the argument used when i is reachedfrom x1 can be applied to x2. Because router i always sets tagii = correct and TRT dealswith simple paths only, this argument can be applied recursively only for a maximum ofh <1 times until i is reached, where h is the number of hops in the implicit path from nto j reported by n to i. Therefore, case 2 must eventually reduce to case 1 and it followsthat the lemma is true.Lemma 5 The change in the cost or status of a link will be reected in the distance andthe routing tables of a router adjacent to the link within a �nite time.Proof: Regardless of the state in which router i is for a given destination j, it updatesits link-cost and distance table within a �nite time after it is noti�ed of an adjacent linkchanging its cost, failing, or starting up. On the other hand, router i is allowed to update itsrouting table for destination j only when it is in passive state for that destination. However,
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43because LPA is live (Lemma 4), if router i is active for destination j, it must receive all thereplies to its query regarding j within a �nite time, i.e., when it becomes passive. Whenrouter i becomes passive for destination j, it executes Procedure TRT, which updates therouting-table entry for destination j using the most recent information in router i's distancetable (Lemma 4.1). This implies that any change in a link is reected in the distance androuting tables of a neighbor router within a �nite time T . Q.E.D.Given Lemma 5 and our assumption about time Tc, a �nite time must exist when allrouters adjacent to the links that changed cost or status have updated their link cost andstatus information, and after which no more link-cost or topology changes occur. Let Tdenote that time, where Tc � T <1.Theorem 6 After a �nite time t � T , the routing tables of all routers must de�ne the �nalshortest path to each destination.Proof: Let T (H) be the time at which all messages sent by routers with shortest pathshaving H�1 hops (H � 1) to a given destination j have been processed by their neighbors.Assume that destination j is reachable from every router.For any router a adjacent to j, it follows from Lemma 5 that, if router a's shortest pathto j is the link (a; j), then router a must update Daj = daj by time T = T (0) and thetheorem is true for H = 0.Because LPA is loop free at every instant (Theorem 5), the number of hops in anyshortest path (as implied by the successor entries for destination j in all the routing tables)is �nite. Accordingly, the proof can proceed by induction on H .Assume that the theorem is true for some H > 0. According to this inductive assump-tion, by time T (H), router i must have a correct routing-table entry for every destinationfor which it has a shortest path of H hops or less. Property 4 must be satis�ed for allsuch destinations. On the other hand, from the de�nition of T (H + 1), it follows that anyupdate messages sent by routers with shortest paths of H hops or less to j or any other
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44destination have been processed by their neighbors by time T (H + 1). Therefore, if routeri's shortest path to destination j has H + 1 hops, Property 4 must be satis�ed at router ifor that destination by time T (H + 1), because all possible predecessors for destination jmust satisfy Property 4 at router i and that router must have the correct information forlink (i; sij) at time T (0) < T (H + 1) (Lemma 5). It follows that the theorem is true for thecase of a connected network.Consider the case in which j is not accessible to a connected component C of the network.Assume that there is a router i 2 C such that Dij < 1 at some arbitrarily long time. Ifthat is the case, j must satisfy Property 4 through at least one of router i's neighbors atthat time; the same applies to such a neighbor, and to all routers in at least one path fromi to j de�ned by the routing tables of routers in C. This is not possible, because C is �niteand LPA is always free of loops and live, which implies that, after a �nite time tf � T , allpaths to j de�ned by the successor entries in the routing tables of routers in C must leadto routers that have set their distance to j equal to1. Therefore, because C is �nite, LPAis live, and messages take a �nite time to be transmitted, it follows that destination j willfail to satisfy Property 4 at each router within a �nite time t � tf , who must then set itsdistance to in�nity, and the theorem is true. Q.E.D.Theorem 7 A �nite time after t, no new update messages are being transmitted or pro-cessed by routers in G, and all entries in distance and routing tables are correct.Proof: After time T , the only way in which a router can send an update message is afterprocessing an update message from a neighbor. Accordingly, the proof needs to considerthree cases, namely: router i receives an update, a query, or a reply from a neighbor.Consider an arbitrary router i 2 G. Because LPA is live (Theorem 5) and router iobtains its shortest distance and corresponding path information for destination j in a�nite time after T (Theorem 6), router i must be passive within a �nite time ti � T .If router i receives an update for destination j from router k after time ti, router i mustexecute Procedure Update. If router i has no path to destination j, Dij must be in�nity
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45and router k must report an in�nite distance as well, because router i achieves its �nalshortest-path at time ti; in this case, router i simply updates its distance table. On theother hand, if router i has a path to destination j, then Dij <1 and router i must �nd thatFC is satis�ed and execute Procedure TRT. Because an update entry is added only whenthe shortest distance or predecessor to j change, router i can send no update or query ofits own.If router i receives a query from a neighbor for destination j after time ti, it must executeProcedure Query. If router i has no physical path to destination j, Dij must be in�nity androuter k must report an in�nite distance in its query, because router i achieves its �nalshortest-path at time ti; in this case, router i simply updates its distance table and sendsa reply to router k with an in�nite distance. On the other hand, if router i has a physicalpath to destination j, it must determine that FC is satis�ed when it processes router k'squery. Accordingly, it simply sends a reply to its neighbor with its current distance andpredecessor to router j. Therefore, router i cannot send an update or query of its own whenit processes a query from a neighbor after time ti.After time ti, router i cannot receive a reply from a neighbor, unless it �rst sends aquery after time ti, which is impossible according to the above two paragraphs.It follows from the above that, for any given destination, no router in G can generatea new update or query after it reaches its �nal shortest path and predecessor to thatdestination. Because every router must obtain its �nal shortest distance and predecessorto every destination within a �nite time (Theorem 6), the theorem is true. Q.E.D.4.5 Complexity of LPAThis section compares LPA's worst-case performance with respect to the performance ofDBF, DUAL, and ILS. This comparison is made in terms of the overhead required to obtaincorrect routing-table entries a assuming that the algorithm behaves synchronously, so thatevery router in the network executes a step of the algorithm simultaneously at �xed points
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46in time. At each step, router receives and processes all the inputs originated during thepreceding step and if required, sends update messages to the neighboring routers at thesame step. The �rst step occurs when at least one router detects a topological change andissues update messages to its neighbors. During the last step, at least one router receivesand processes messages from its neighbors and after which router stops transmitting anyupdate messages till a new topological change has taken place. The number of steps takenfor this process is called the time complexity (TC); the number of messages required toaccomplish this is called the communication complexity (CC).DBF has a worst-case time complexity of O(jN j) and worst-case communication com-plexity of O(jN2j), where jN j is the number of routers in the network G [GLA92]. ILSrequires that each change in the cost or status of a link be communicated to all routers inthe network; accordingly, it has TC = O(d) (where d is the network diameter), because alink-state update must traverse the whole network, and CC = O(E), because each updatetraverses each link at most once in ILS but each link has two states, one in each directionof the link. On the other hand, DUAL has TC = O(x) and CC = O(x), where x is thenumber of routers a�ected by the single topology change [GLA92]. The following theoremshows that LPA has TC = O(x); using a similar argument, LPA can be shown to have aworst-case communication complexity of O(x) after a single resource failure.Theorem 8 The time complexity for a single link failure or link-cost change of LPA isO(x) in the worst-case, where x is the number of routers a�ected by the change.Proof: Let the source router be i, destination router be j and the failed link be (n;m)where router m is downstream to router n.Here also we have the same four cases as in Theorem 4.A router with the initial shortest path not going through the changed link (Case 1)does not change its routing table, because the original shortest path is not changed andthe change in the link cost has only resulted in the increase in path length through otherroutes.
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47In Case 2, router i will be aware of the change in the link cost along the shortest pathafter a delay not exceeding the number of links on the new shortest-path. In Case 3, thechange will be noticed in the worst-case after a delay of at most the number of links a�ectedby the link cost change.Let router nk with the original shortest path through the changed link be k hops awayfrom router n on the initial shortest path. When a link cost changes or the link fails,the router containing the failed link selects a new neighbor for a path to the destinationj, if the successor satis�es the feasibility condition. If a feasible successor is not found,router will send queries to its neighbors and sends a reply and query to the originator ofthe query. Queries will propagate down the routing tree which is a�ected by the link costchange. The feasible distance will be eventually determined after a worst-case delay of thenumber of links a�ected by the link-cost change. Thus all routers involved in the path willhave correct path information. Once the feasible distance has been found, the routing tableentries are updated and the appropriate update messages will be sent to the neighboringrouters. The distance of the stable router found in the path from i to j in the new shortestpath is bounded by x, the number of routers a�ected in the shortest path. Therefore, inthe worst-case, the number of steps required for a router to converge to its correct distanceis O(x). Q.E.D.4.6 SummaryIn this chapter, we have presented and veri�ed the �rst routing algorithm (LPA) thateliminates the formation of temporary routing loops without inter-nodal synchronizationmechanism spanning multiple hops or the communication of complete or variable lengthpath information. LPA is based on the notion of using information about the second to lasthop (or predecessor) of shortest paths to ensure termination, and an e�cient inter-neighborcoordination mechanism to eliminate temporary loops. Detailed proofs of loop-freedomand correctness of LPA were presented and LPA's complexity was analyzed. The worst-
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48case complexity of LPA for a single recovery or failure is O(x), with x being the number ofnodes a�ected by this recovery or failure.
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49Chapter 5SimulationIn this Chapter, we present the simulation results for PFA and LPA, which were describedand veri�ed in Chapters 3 and 4. The performance of these two algorithms is comparedwith that of DUAL [GLA93] and an ideal link state (ILS) algorithm. DUAL and ILS werechosen, because they represent the state-of-the-art in internet routing protocols.The rest of the Chapter is organized as follows. The next section gives a brief intro-duction about the simulator that has been used in our simulation experiments. Section 5.2explains the design of our simulator. Section 5.3 list the parameters used in measuringthe performance and the instrumentation part of the simulations. Section 5.4 describes theresults of the simulations. Finally, Section 5.5 summarizes the chapter.5.1 Simulations in DramaWe have developed our simulations using an actor-based, discrete-event simulation languagecalled Drama [Zau91] together with a network simulation library. Drama is a C-basedsimulation language that supports an actor-based computational model, in which actors areindependent activities that communicate by passing messages in the context of a discrete-event simulation. This makes it convenient for modeling communication networks.Drama contains a library of functions, some of which look up user-supplied functionsfrom tables. The language extensions are mostly declarative. The system contains a trans-lator and a corresponding run-time library. The debugging support for the runtime librarygives a pseudocode description of each function instead of the source code itself. Drama
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50simulations deal with several classes of objects which include simulations and actors as theprimary classes. The user declares pointers to these objects, and Drama primitives are usedto create them. A script must be supplied to create an actor. Scripts are the functions thatprogram an actor's behavior.Communication among actors is done by means of message passing. Messages are postedon simulation's event queues. There can be two types of variables in Drama { instantvariable and static variable. Instant variable are similar to static variables in C whereaseach actor has one copy of the static variable. To customize simulations, Drama providesdaemons, hooks, bu�ers and handlers. To each of the objects in Drama (actor, simulationsand queues), a bu�er or a daemon can be attached. For simulations, the daemon can becalled each time the event queue is checked for the next event. Thus, it is easy to have asimulation run for a user-de�ned time.5.2 Design of the SimulatorThe network simulation library of Drama treats both nodes and links in the networks asactors. Nodes send packets over the links using the functional-call interface to the link'sactor. The packets are received by responding to the messages delivered from the eventqueue. Link failures and recoveries are handled by sending a link-status message to allnodes at the end points of the appropriate link. In the link model used in the simulation,link propagation time is an input parameter which can be changed during the course ofsimulation. We have modeled all runs with unit propagation time. If a link fails, all thepackets in transit are dropped.The simulation of the algorithms is based on the pseudocode description of algorithmgiven in the previous chapters. In our simulations, a node responds to the receipt of a mes-sage by running the routing algorithm and sending the required updates to its neighboringnodes. Outgoing messages are queued at a node after waiting for some processing time. Ifany incoming packets arrive before the processing time expires, the routing algorithm is runagain and the new packets that are generated are queued. Once the processing time for all
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51the events expire, depending on the algorithm, the redundant updates are removed and thequeues are sent over the links. In our runs, we have set the processing time to zero. Theinternal mechanism of Drama ensures that all updates due to arrive at the current simula-tion time are processed before the generation of new updates. Due to this mechanism, inthe simulations, multiple updates are put into the same packet. This makes the number ofpackets that are being transmitted an important performance measure than the number ofbits that are actually transmitted.We have simulated PFA and LPA together with an ILS using Dijkstra's shortest-pathalgorithm and DUAL. In the case of PFA and LPA, a routing table containing the prede-cessor and successor information were generated. Simulations of both algorithms are basedon an incremental update mechanism.5.3 ParametersWe have instrumented the simulations in two ways. The simplest way is to have a set ofcounters that can be reset at various points and are updated appropriately. These countersdetermine the statistics such as the total number of messages sent, total time taken etc. atall nodes. The value of these counters are recorded when the event queue becomes empty(which implies the algorithm has converged). These counters themselves are of two types.They can be associated with the individual nodes and links or can be associated with allnodes and links.Statistics are also collected after the processing of each event. Drama supports thisby means of calling a function whose convention is speci�ed by the run-time library. Therouting tables are characterized after each step thereby allowing us to characterize the routesproduced by the algorithm. Each input event received during the same simulation step areprocessed independently.After each link or node failure or recovery, or change in the cost of a link, the algorithmis allowed to run to convergence. Node failures are modeled as all the links connected tothat node going down simultaneously, and node recovery is modeled as all the links that
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52connect to that node coming back up simultaneously. The quantities that were measuredduring the simulation includeEvents: The total number of updates (including queries and replies in LPA and DUAL)and the changes in the link costs processed by nodes.Packets: The total number of packets transmitted over the network. Each of these packetsmay contain multiple updates.Duration: The total time elapsed for the algorithm to converge.Operations: The total number of operations performed by the algorithm. The operationcount is incremented when an event occurs (and whenever procedure rt update is calledin case of PFA).Both the mean and the standard deviation of the above measures are computed.5.4 ResultsTo obtain insight on the average performance of PFA and LPA in a real network, sim-ulations were run using the topologies of typical networks after we performed a series oftests on smaller topologies for debugging purposes. The main network topologies consid-ered are LOS-NETTOS, NSFNET-T1-Backbone, and ARPANET as shown in Figure 5.1.We selected these topologies to compare the performance of the routing algorithms for thewell-known cases, given that we cannot sample a large enough number of networks. Wehave performed a comprehensive number of tests on these topologies. For each network, wegenerated test cases consisting of all single failures and recoveries both for links and nodes.The routing algorithm was allowed to converge after each such change. The link costs arealways positive and greater than zero. In�nite cost is used to represent a failed link. Inour simulations, we have modeled each link to be of unit cost. However, this can be easilychanged to any number greater than zero or can be associated with a cost metric.
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LOS-NETTOS NSFNET-T1

ARPANETFigure 5.1: Network TopologiesIn all cases, nodes were assumed to perform computations in zero time and links wereassumed to provide one time unit of processing delay. The link model allows link delay andlink cost to be set independently. The simulation uses link weights of equal cost (unit cost).Each unit of time therefore represents a step in which all currently available packets are pro-cessed. Even though the simulation proceeds synchronously, node model allows the packetsto be processed asynchronously. Thus, each event at a node is processed independently ofother events received during the same simulation step. During each simulation step, a nodeprocesses input events received during the previous step one at a time, and generates mes-sages needed for each input event it processes. To obtain the average �gures, the simulationmakes each link (node) in the network fail, and counts the steps and messages needed foreach algorithm to recover. It them makes the same link (node) recover and repeats theprocess. The average is taken over all the link (node) failures and recoveries. The results
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54of this simulation are shown in Tables 5.1{5.4. These results are compared with that ofDUAL and an ideal link-state algorithm (ILS) running Dijkstra's shortest-path algorithm.For a single resource failure or recovery, the operations count for the Dijkstra's linkstate algorithm is substantially higher than that for other algorithms, often more than amagnitude higher. This is expected because ILS forces a router to recompute its shortestpaths using the new topology.PFA, LPA and DUAL have better overall average performance than ILS after the re-covery of a single router or a link. This is also expected of any e�cient distance vectoralgorithm, because routers propagate updates only when they change their routing tables,while ILS oods the entire network with the same link-state update. The performance ofPFA and LPA are comparable to ILS after the failure of a single router or a link. This isa remarkable improvement over DUAL, which requires approximately twice the number ofsteps to converge than ILS after failures. Insofar as overhead tra�c is concerned, PFA andLPA are comparable to DUAL and ILS. PFA and LPA converge faster than DUAL and ismore responsive than DUAL.The time required for PFA to converge is half that of DUAL. The number of packets(messages) exchanged among nodes is also more than 50% less than that of DUAL. However,the event count and the operation count is about 2 to 3 times higher than DUAL. Theconvergence time if PFA is better compared to ILS for larger networks.The convergence time for LPA is better than that of DUAL for single resource failureor recovery. Also, the number of packets exchanged after each step is upto one third that ofDUAL for large networks and the event count is comparable to DUAL. As the size and theconnectivity of the network increases, LPA performs better compared to DUAL. Comparedto ILS, the results obtained for LPA are very encouraging. A minimum overhead of two orthree steps over the number of steps needed to traverse the network along the fastest path isneeded to handle queries. Therefore, our results indicate that not considering this overhead,LPA tends to update routing tables as fast as it can be done with ILS. The results obtainedfor PFA for link or node failures also support this conclusion. In general, however, PFA and
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55Table 5.1: Routing Algorithm Response to a Single Link FailureParameter PFA LPA DUAL ILSmean sdev mean sdev mean sdev mean sdevLos-Nettos Link-Failure CasesEvent Count 45.7 17.9 94.7 33.8 49.9 18.6 29.0 5.8Packet Count 13.5 6.01 26.3 6.45 32.6 11.8 27.0 5.8Duration 2.86 0.74 4.09 0.79 6.7 1.33 4.2 0.88Operation Count 62.4 18.03 67.4 16.9 69.9 18.6 724.1 27.3NSFNET Link-Failure CasesEvent Count 105.9 55.21 160.2 63.7 91.1 46.2 53.0 0.0Packet Count 28.7 12.7 46.22 13.34 53.7 18.5 51.0 0.0Duration 3.7 0.79 5.56 1.06 6.9 0.88 5.3 0.25Operation Count 113.1 51.8 106.1 31.8 118.1 46.2 1840.1 16.4ARPANET Link-Failure CasesEvent Count 962.1 392.9 587.3 381.5 720.9 449.1 160.0 0.0Packet Count 96.5 45.9 126.1 59.8 266.8 97.3 158.0 0.0Duration 7.16 1.75 9.24 3.39 15.1 3.45 8.5 0.74Operation Count 843.90 594.5 385.6 190.8 813.9 449.1 25600.2 57.121Table 5.2: Routing Algorithm Response to a Single Link RecoveryParameter PFA LPA DUAL ILSmean sdev mean sdev mean sdev mean sdevLos-Nettos Link-Recovery CasesEvent Count 91.3 15.5 64.0 11.3 45.7 7.45 33.3 1.86Packet Count 18.0 5.04 10.36 2.06 17.0 7.25 31.9 1.86Duration 2.93 0.46 3.27 0.62 3.71 0.88 3.86 0.46Operation Count 109.6 24.6 52.0 5.65 65.7 7.45 944.0 45.8NSFNET Link-Recovery CasesEvent Count 162.8 45.9 98.8 24.4 67.5 18.8 56.9 2.39Packet Count 36.3 12.4 16.0 3.38 22.0 6.15 54.9 2.39Duration 3.4 0.49 4.17 0.5 3.86 0.4 4.7 0.4Operation Count 171.1 50.4 75.4 12.2 93.7 18.8 2140.4 80.6ARPANET Link-Recovery CasesEvent Count 638.2 370.3 242.4 112.8 362.2 147.6 162.7 15.4Packet Count 108.6 48.9 33.0 25.5 79.3 21.3 160.7 15.4Duration 6.89 1.51 5.96 2.75 7.3 1.46 7.84 0.67Operation Count 1144.9 620.1 213.2 56.4 454.2 147.6 26900.8 2477.9
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56Table 5.3: Routing Algorithm Response to a Single Node FailureParameter PFA LPA DUAL ILSmean sdev mean sdev mean sdev mean sdevLos-Nettos Node-Failure CasesEvent Count 135.6 79.5 88.18 27.42 73.0 25.4 31.8 9.6Packet Count 39.8 17.5 25.72 6.53 45.5 3.26 26.7 7.19Duration 5.82 2.85 4.36 1.07 6.91 0.99 4.09 0.51Operation Count 195.0 112.2 95.0 36.65 123.9 50.2 702.9 204.3NSFNET Node-Failure CasesEvent Count 176.4 48.8 160.7 64.3 176.6 78.1 64.9 8.17Packet Count 46.8 12.7 41.42 9.45 97.2 23.7 58.7 7.33Duration 4.8 0.98 4.93 0.96 12.6 5.13 5.21 0.3Operation Count 262.6 68.4 158.4 42.7 253.2 89.1 2070.9 234.6ARPANET Node-Failure CasesEvent Count 1350.8 373.8 646.5 424.4 1050.4 300.8 218.8 67.1Packet Count 96.6 75.9 144.7 55.3 382.6 81.2 212.1 65.1Duration 5.4 3.4 9.12 2.4 17.8 9.2 8.6 0.72Operation Count 1803.8 407.4 589.5 271.3 1320.8 563.5 33356.7 10766.2Table 5.4: Routing Algorithm Response to a Single Node RecoveryParameter PFA LPA DUAL ILSmean sdev mean sdev mean sdev mean sdevLos-Nettos Node-Recovery CasesEvent Count 221.1 117.9 105.6 67.42 94.3 40.5 56.2 13.4Packet Count 30.4 10.3 13.09 7.01 41.0 12.4 51.1 10.8Duration 3.18 0.38 3.09 0.89 4.7 0.44 4.4 0.5Operation Count 274.9 136.4 103.7 59.6 145.2 66.5 1698.8 478.4NSFNET Node-Recovery CasesEvent Count 379.2 94.6 177.4 67.9 154.2 36.9 92.8 4.6Packet Count 51.4 9.7 22.6 9.13 60.2 9.3 86.6 3.6Duration 3.8 0.4 4.14 1.5 4.6 0.49 5.9 0.3Operation Count 486.0 137.2 166.7 48.7 234.8 49.8 4150.8 239.8ARPANET Node-Recovery CasesEvent Count 980.4 699.7 551.6 296.4 691.9 235.5 301.2 45.3Packet Count 107.2 80.1 68.06 42.03 207.9 46.7 294.5 42.9Duration 5.27 2.56 7.78 3.33 8.5 0.73 9.6 1.14Operation Count 3252.0 1911.5 542.0 224.4 957.6 347.3 50102.2 7930.4
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57LPA cannot guarantee that up-to-date information is not overwritten by stale information(which is eventually corrected). This opens up a research question of how to ensure that arouter updates its distance and routing table using only more recent distance vectors.Node failure is the worst case in DUAL's performance. PFA and LPA's performanceis comparable to ILS even for node failure and recovery cases and performs better thanDUAL in terms of convergence time and the number of packets exchanged. The numberof operations performed in PFA for single router or link failure or recovery is almost twicethat of DUAL. However, it is an order of magnitude less than that of ILS. The number ofoperations performed in LPA is always less than DUAL.The comparison between the performance of PFA and LPA clearly indicates that theinter-neighbor synchronization mechanism of LPA does not introduce excessive overhead onthe algorithm's performance and the faster convergence time of LPA as compared to DUALis due to the fact that LPA achieves loop freedom by blocking potential temporary loops(procedures DT and TRT) using a single-hop inter-neighbor synchronization mechanism. Incontrast, DUAL uses queries that involve many nodes in the network and as many hops asthe worst-case hop length of a path. PFA incurs fewer steps than the rest of the algorithmsafter single failures. This is because of procedure DT, which prevents the formation oftemporary loops without internodal coordination. However, the results obtained for LPAafter router or link failures are very encouraging. LPA is better than PFA in terms ofthe number of messages exchanged for resource recoveries and the number of operationsperformed after any type of resource change. This is due to Procedure TRT and the use oftags which eliminate the need to traverse the complete path from destination to the sourceafter each input event is processed. Because of the inter-neighbor synchronization schemeused in LPA, it can be expected that at least two additional steps are required to converge,in addition to the steps required to propagate updates across the network.The above results indicate that LPA constitutes a more scalable solution for routingin large internets than ILS and even DUAL. In fact, LPA constitutes the most e�cientdistance vector algorithm reported to date. After resource failure, LPA incurs similar
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58number of steps and overhead tra�c as ILS, but requires much fewer operations at eachrouter. After resource addition, LPA requires fewer steps, messages and operations thanDUAL and ILS. Because of the inter-neighbor synchronization needed in LPA to ensureloop-freedom, PFA outperforms LPA on some instances (in terms of the number of stepsand messages); however, LPA always requires fewer operations and is always free of loops.5.5 SummaryIn this chapter, we have discussed the simulation results for PFA and LPA and have com-pared them with DUAL and an ILS that uses Dijkstra's shortest-path algorithm. Sim-ulations have been carried out using a C-based simulation language called Drama alongwith the network simulation library. The results indicate that the two proposed algorithmsconverge faster than DUAL and ILS, while exchanging fewer messages for single resourcechanges. The comparison of PFA and LPA indicates that LPA achieves loop-freedom with-out excessive additional overhead. LPA is clearly the best alternative among the algorithmssimulated.
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59Chapter 6ConclusionsResults: Path-�nding algorithms are an attractive alternative to DBF for distributedrouting, because they eliminate counting-to-in�nity problem. However, current path-�ndingalgorithms can incur substantial temporary loops in the paths speci�ed by predecessorinformation before they converge, which leads to slower convergence.In this thesis, we have proposed two new algorithms to the class of path-�nding algo-rithms that eliminates the formation of temporary loops. We introduce, verify and analyzethese two algorithms, which we refer to as PFA and LPA. Both of these algorithms operateby specifying the second-to-last-hop to each known destination, along with the distanceto the destination. Unlike earlier algorithms, PFA and LPA, upon receiving an updatefrom its neighbor k, determines if a path to destination through any of its other neighbor-ing nodes includes neighbor k itself. This step reduces the possibility of temporary loops.LPA achieves loop-freedom at every instant using the implicit path information and aninter-neighbor coordination mechanism that spans over single hop only.The proposed algorithms use the same amount of space as the basic path-�nding algo-rithms. The performance of these two algorithms has been compared with that of DUALand an algorithm based on ideal link-state algorithm which constitute the state of the artin the present-day internet routing. The simulations were carried out using a C-based sim-ulation language Drama along with a network simulation library. The results indicate thatthe two proposed algorithms converge faster than DUAL and ILS, while exchanging fewer
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60messages for single resource changes. The comparison of LPA and PFA indicates that LPAachieves loop-freedom without excessive additional overhead.Our simulation results show that LPA converges faster than DUAL for single-resourcechanges and that the number of messages exchanged is comparable to the number obtainedfor DUAL. LPA is comparable to ILS insofar as number of steps and number of messagesneeded for convergence after resource failures, and is faster than ILS after resource recoveriesand requires fewer operations than ILS. Taking the average number of steps, messages andoperations into account, the results indicate that LPA constitutes a more scalable solutionfor routing than ILS or even DUAL.Future Work: Our research indicates that LPA is the most e�cient loop-free routingalgorithm reported to date and, perhaps, the most e�cient distributed shortest-path routingalgorithm. A research problem that neeeds to be investigated is how to ensure that routersusing LPA will never update their routing information using stale distance vectors. Oneof the other research interests could be to simulate data tra�c and measure the resultingpacket loss from looping.Because of the growing size of internetworks, it would be of great interest to extendLPA to hierarchical networks. A promising approach to address this problem is to adoptMcQuillan's scheme to hierarchical routing. Our simulation results for LPA and ILS seemto indicate that this new hierarchical routing scheme should outperform OSPF, becausethe latter is based on topology broadcast algorithms. Comparing the performance of bothschemes constitutes another research question.
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